If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+25x-250=0
a = 4; b = 25; c = -250;
Δ = b2-4ac
Δ = 252-4·4·(-250)
Δ = 4625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4625}=\sqrt{25*185}=\sqrt{25}*\sqrt{185}=5\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{185}}{2*4}=\frac{-25-5\sqrt{185}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{185}}{2*4}=\frac{-25+5\sqrt{185}}{8} $
| -3-4(x+2)=5 | | (4x+5)(2-3x)=0 | | 3/5(y+2)=1/2+4 | | 10x^2+2x-44=0 | | 3x+43=9 | | 2+6y=26 | | 82=4y-14 | | 11x5=13x-5 | | 3u+-17u+2u-14u=-6 | | 3-5(y+2)=1/2+4 | | -60+11x=40+6x | | 7a-4a-1=5 | | -5m+11=51m | | 6x+15=11+1x=180 | | 2x+30+6x-90=180 | | 5(x-4)-x=4(x+5)-1 | | 3x-2x+1=2+3x-1 | | 83=23+4j | | 2x—2=-x+10 | | 13x-91=-5x+197 | | 51/x+12=-5 | | 5y+35=6y+48 | | 40x+16=136 | | -8x-47=-13x+48 | | 4-(2x+5)=1/2(-4-2) | | 2/3x+1/4=1/6x-1/5 | | 12z+4z-12z-8=20 | | -10x-19=-11x+16 | | u/9+67=70 | | 4(2x-4)-5x+4=−30 | | 1/2•-2+1=x | | 60=5(d+8) |